published in
Proceedings of 17th NORCHIP '99 Conference,
Oslo, Norway 1999, pp. 52-60.

Overcoming Ordering Restrictions for Synthesizing
Binary Decision Diagrams

Christoph Meinel, Harald Sack, Christan Stangier

FB IV - Informatik, Universitat Trier
D-54286 Trier, Germany
phone: +-+49 (651) 201-2093
fax: ++49 (651) 201-3954

email: {meinel sack,stangier}@uni-trier.de

Abstract

Many problems in computer-aided design of highly integrated circuits (CAD for
VLSI) can be transformed to the task of manipulating objects over finite domains.
The efficiency of these operations depends substantially on the chosen data struc-
tures. In the last years, ordered Binary Decision Diagrams (OBDDs) have proved
to be very efficient in this context. One restriction for the efficient synthesis of
two or more OBDDs is that they must share a common variable order. We address
the problem of efficiently synthesizing OBDDs that have different variable orders by
adapting a reordering based synthesis technique. In particular, we apply this tech-
nique to the basic operation of the irredundant cover problem, i.e. testing functional
containment of two OBDDs.

1 Introduction

A central problem in the design of CAD (Computer-Aided Design) systems for VLSI
(Very Large Scale Integration) circuits is to represent the functional behavior of a circuit.
For the solution of problems like combinational circuit verification, where it is considered
whether a combinational circuit C satisfies a given specification S, computer-internal
representations of C' and S have to be determined that can be used to test the relevant
properties. During the last decade Reduced Ordered Binary Decision Diagrams (ROB-
DDs or, for short OBDDs) introduced by Bryant [Bry86] have become a successful data
structure in this context (for a complete survey see [MT98]).

The switching behavior of digital circuits can be described in terms of Boolean func-
tions f : {0,1}" — {0,1} and by introducing a suitable 0-1-encoding almost all finite
problems can be modeled. The great importance of Boolean functions stems from the
possibility to obtain substantially simplified and optimized circuits by applying optimiza-
tion techniques during the design process. But, before applying optimization techniques,
Boolean functions themselves have to be represented as efficient as possible in computer
memory. Most conventional representations of Boolean functions like circuit netlists
or truth tables have serious disadvantages, like not being compact, or insurmountable
problems regarding the algorithmic handling. In contrast to descriptive conventional

representations based on computation rules, OBDDs are based on a decision process.
Their success is due to the fact that OBDDs are a canonical representation of Boolean
functions (thus, making the test of functional properties as satisfiability or equivalence
straightforward) and that they are compact for most Boolean functions of practical im-
portance.

The variable order chosen for the representation of a Boolean function as an OBDD
plays a very important role, since the size of the OBDD representation for a function
may vary exponentially with different orderings. However, the applicability of OBDDs
depends heavily on the size of the representation and therefore on the chosen variable
order.

The problem of finding an optimal variable order is known to be NP-hard [BW96].
Hence, much effort is spent on developing heuristics that compute acceptable orders.
We distinguish two different types of heuristics: static heuristics, i.e. heuristics that
choose a variable order for a given Boolean function represented as a circuit by analysis
of the circuit topology [MWBS88, FOH93], and dynamic heuristics, i.e. heuristics that
change the variable order dynamically during the construction of the OBDD, based on
the exchange of adjacent variables [Rud93].

In this paper we address the problem how to work with OBDDs of different variable
orders, especially w.r.t. the application of a binary Boolean operator to two OBDDs.

Even though in [FHS78] an efficient algorithm for the equivalence test of Free BDDs,
i.e. BDDs without the ordering constraint is given, this algorithm cannot be used for
computing arbitrary Boolean operations. We address the similar problem by working
with OBDDs of different variable orders, but we extend it by providing a constructive
algorithm for the application of an arbitrary Boolean operation.

In a naive approach one may first reorder the involved OBDDs to a common variable
order and then carry out the operation to be applied. The major problem with this
method is the fact that for some OBDDs it is not possible to transform them to a common
variable order within the given resource limitations. Instead of doing the computation
in separate steps we incorporate the reordering procedure completely into the synthesis
process.

To do this, we use an additional variable, called the operator variable representing a
binary Boolean operation to be computed. An operator node is introduced at the top
level of the resulting OBDD and connected to the two OBDDs to be applied to. By
exchanging adjacent variables the operator node can be moved down the OBDD towards
the terminal nodes until a final shortcut operation can be applied and the operator node
disappears. The noticeable property of this approach is that the two OBDDs to be
connected need not to share a common variable order.

In another context, an approach called Reordering Based Synthesis, based on the same
principles has been proposed by [HDB97]. The purpose of this method was to substitute
the conventional recursive synthesis algorithm for OBDDs by a sequential one. But, this
technique can only be used for OBDDs sharing a common variable order.

A possible application of our new algorithm is, e.g. the determination of the irredun-
dant cover, a problem occurring in two level logic minimization. For the programming of
PLA elements (Programmable Logic Arrays) the Boolean functions to be represented are
given in form of two-level logic expressions. To develop an efficient realization as a PLA,

the two-level logic expression can be minimized by utilizing an irredundant cover deter-
mined by prime implicants [BHMS84]. To find a minimal irredundant cover, the Boolean
functions represented by prime implicants are tested for containment. Containment can
easily be determined by applying the Boolean implication to the functions involved.

The experiments performed up to now are rather artificial, but allow a good insight
into the behavior of the proposed algorithm. We chose pairs of Boolean functions rep-
resented by circuit descriptions out of a common benchmark set. We constructed the
OBDDs for each circuit and optimized them separately by common reordering strategies.
Because the circuits have almost nothing in common, the variable orders obtained by re-
ordering heuristics are rather different. Finally, we tested these OBDDs for containment.

Besides irredundant cover computation, there is a wide range of applications for this
algorithm. Starting with sequential analysis of digital circuits where the transition re-
lation and the set of reachable states have different variable ordering restrictions, to
the more efficient usage of partitioned OBDDs (POBDDs) [NJF196], where the single
partitions of an POBDD also have different variable orderings.

The paper is structured as follows: In Section 2, we give some basic definitions con-
cerning OBDDs, different reordering, and synthesis procedures. In Section 3, we intro-
duce our new algorithm. Section 4 deals with first experimental results and Section 5
concludes the paper with an outlook on future work.

2 Basic Definitions

2.1 OBDDs
An Ordered Binary Decision Diagram (OBDD) P for a Boolean function f : B" — B
over the variables X,, = {z1,...,x,} is a directed acyclic graph consisting of inner nodes

labeled with variables from X, and sinks labeled by the Boolean constants 1 and 0. Each
inner node has two outgoing edges: the 1-edge and the 0-edge. The OBDD has a starting
node called its root. The computation of f(ay,...,a,) a; € {0,1} follows a path from the
root to a sink, where on a node labeled with x; the input bit a; is tested. If a; = 1, the
path follows the 1-edge, otherwise the 0-edge. The value of the reached sink determines
f(ai,...,a,). Each variable occurs at most once on a path from the root to the sink.
The variables on a path respect a given order, which is a permutation 7 on the variable
indices so that xr1) < Tr2) < ... < Zz(n). For each edge leading from a node labeled by
Tx(;) to a node labeled with ;) the proposition ¢ < j holds.

To deal with Boolean functions f : B® — B™, we consider multi-rooted shared OB-
DDs by introducing multiple roots into a single OBDD, with each root representing a
subfunction of f = (fi,..., fm), f; € B¥ = B,k < n.

All important operations on Boolean functions usually required in synthesis and ver-
ification have efficient OBDD algorithms. Due to the fact that there are 22" functions on
n variables, many functions have an OBDD representation of exponential size, but most
functions of practical relevance can be represented with small or moderate OBDD sizes.

The size of an OBDD depends substantially on the variable order. Therefore, one
may have an exponential improvement in size by choosing a good variable order.

2.2 OBDD Synthesis

Typically synthesis of OBDDs is based on a recursive algorithm that expands the involved
Boolean functions. The ternary if-then-else-operator (ITE) [BRB90] forms the core of
the recursion based synthesis operation (if F' is true, then G, else H).

ite(F,G,H)=F -G+ F-H

With ITE it is possible to implement all binary Boolean operations. The implementation
of ITE relies on the Boole-Shannon-expansion of the function under consideration w.r.t.
the leading variable x in the variable order m. Thus ITE can be implemented as

ite(F,G,H) = (z,ite(Fy, Gy, Hy), ite(Fz, Gz, Hz)),

where F, and Fz denote F' evaluated at x = 1 and x = 0, respectively. Time and space
complexity is bounded by O(|F|-|G|-|H|). Considering binary Boolean operations, only
two operands are nonterminals and therefore, the complexity of a binary operation is
bounded by O(|F|-|G]).

Alternatively, the Reordering Based Synthesis method depends on the ongoing ex-
change of variables in adjacent levels of the underlying OBDDs. Since the exchange of
neighbored variables is a local operation [Rud93], it can be implemented very efficiently.
Suppose we have the two OBDDs F and G with sizes |F| and |G|. For computing the
OBDD H = F ® G, ® being an arbitrary binary Boolean operation, a new operator
variable ¢ is introduced into the OBDD and H' = ¢- F 4 ¢- G is constructed. By the level
exchange operation the variable ¢ can be moved downwards within the OBDD. If, after a
level exchange operation one of the two successors of the operator variable is a terminal
node, we replace the operator variable and its two successors by the result obtained in the
application of the operator ® to the terminal node and the remaining node. Thus, after
swapping the operator variable down to the sink, all operator nodes can be replaced.

The advantage of the Reordering Based Synthesis method is its nonrecursive execu-
tion, i.e. the synthesis operation can be interrupted at any time and reordering of the
other variables can be done. On the other hand the nonrecursive approach result in
smaller memory peak sizes, since less intermediate results have to be stored.

3 Including Synthesis into the Reordering Process

Let us assume we have two Boolean functions f, g : B® — B™ over the Boolean variables
{z1,...,2,}. Let us further suppose that f and g are represented by OBDDs P; and P,
and that P has the variable order m; and P, the variable order 7.

Let ® be a arbitrary binary operator and h the result of the operation f ® g, with 7,
being the variable order of the OBDD P, representing h. To perform this computation
with a regular synthesis algorithm Py and P, have to share a common variable order.

In our approach we introduce an operator variable ¢, representing the binary Boolean
operation ® and connect it with Py and P,. Since P; and P, have different variable
orders m¢ and 7y, we have to take care that for the level exchange operation the variables
in the level directly below the operator variable contain the same variable. To achieve

this, we change the order of the two OBDDs separately by placing a common variable
below the operator variable while leaving the rest of 7; and 7, unchanged. The variable
that is placed next to the operator variable is chosen by a simple greedy heuristic that
selects the variable that requires the least number of level exchange operations to be put

in the designated place.
Next, we perform a regular level exchange operation of the operator variable and its

successor variable (see Figure 1).

Xi
exchange .-~
. , y

ﬁm ﬁ)l flﬂ f” 00 fm ﬁ)l f1|

Figure 1: Ezchange of Operator Variable with Regular Variable

If one of the sub-OBDDs f00, f01, f10, or f11 is a terminal node, we can immediately
apply the operation represented by the operator node and replace the operator node by
the resulting OBDD (see Figure 2). The algorithm continues until the operator variable

Figure 2: Possible Terminal Case for logical OR

reaches the last position in the variable order (see Figure 3). At this point all operator

f®9

Xk (0)
Xan(1)

already synthesized

new order Tth

k RBRRXIIIXIIR® IXIR IRXIXXR |
k+1 Xa (ke1) = Xag(k+1)
Xat (k+2) l Xung(k+2)

Xrh(k-1)

rest of f restofg
order order ng

n Xat (n) Xaq(k+3)

Figure 3: The Operator Level k Proceeds Downwards to the Terminal Nodes

nodes can be replaced. Note, that the OBDD that is created by this algorithm is not
necessarily reduced. Therefore, a reduction algorithm has to be applied that restores the
canonical form of the synthesized OBDD.

4 Experimental Results

For testing our new algorithm we have chosen a simple containment test as it is included
e.g. in the determination of the irredundant cover of a Boolean function. We chose an

arbitrary number of circuits out of the LGSynth91 [LGS] benchmark suite. From this set
of circuits we took pairs that are of similar OBDD size and have a comparable number
of inputs, since none of the two circuits should dominate the other.

The OBDDs representing these circuits were constructed and optimized separately.
Since the two circuits to be combined usually have not very much in common, they have
quite different variable ordering requirements. Now, we computed the logical implication
of the outputs of the participating circuits.

This was done with our new algorithm using the implication as the operator and also,
for comparison, tested against the naive approach, i.e. representing both the OBDDs to
be combined with the same variable order and then computing the implication by calling
a standard recursive synthesis routine. For the naive approach we tried both possible
variable orders given by the two OBDDs to be combined.

All experiments were performed on an Intel PentiumPro 200 Workstation running
Linux. The computation time was limited to one hour and the memory consumption was
also limited to 100 MB.

In Figure 5 we have provided a table showing our experimental results. In the table all
numbers indicate final OBDD sizes measured in number of nodes. The table is structured
as follows: The first column gives the names of the circuits to be combined. We have
performed the implication in both directions, i.e. circuitl — circuit? and circuit?2 —
circuitl. For each direction we have provided three columns. The first column shows
the result obtained by the application of our algorithm, the second and the third column
show the result obtained by the application of the naive algorithm as described above.
In the second column we have transformed the order of the second OBDD to the order of
the first one, in the third column we have transformed the order in the other direction.

We have evaluated 9 pairs of circuits selected by the criteria given above. In 12
of the computed 18 implications, our algorithm computed a smaller result. Noticeable
is the circuit pair sbc, alu32, where our algorithm results in an OBDD with only 659
nodes, while the best result of the naive method gives 12223 nodes. There are also two
cases where the result of the naive method could not be completely computed, while our
algorithm succeeded.

When evaluating the obtained results we have to keep the following facts in mind:
Our algorithm is by far not optimal, i.e. we have not used a proper reordering strategy
for the remaining parts of the OBDD during the synthesis operation. We also performed
a reduction only at the end of the synthesis operation. By using the reduction algorithm
more often we could avoid large memory peak sizes and therefore could obtain a gain in
runtime.

The runtime of our algorithm is not given in the table by now, because the implemen-
tation of the algorithm is in a rather preliminary state and is not optimized for speed.
At the moment, in some cases our algorithm requires up to 3 times the runtime of the
native approach.

Despite the fact that the implementation of the algorithm is in a rather early state,
we have obtained some interesting results, causing further development of our method to
be very promising.

5 Conclusion and Future Work

One of the major advantages of the described algorithm is that it can be interrupted at
any time to minimize the remaining parts of the OBDDs involved or the newly created
synthesized part. To do this, we have to apply heuristics based on dynamic reordering.
Current research is going on towards developing a proper reordering strategy.

It has to be decided carefully, when and how often to apply the reduction algorithm.
Each application of this algorithms is time consuming. But if we use the reduction
algorithm only very rarely, the size of the synthesized OBDD may grow exponentially.

Further, we do not have to limit ourself to the application of binary Boolean operators.
We can use more complex operators like e.g. AND-EXIST that is required for sequential
analysis. With the help of our algorithm, reachable state set and transition relation in
sequential analysis can be used both with their own variable order when computing the
next iteration in the computation of the reachable state set.

Furthermore, we don’t have to limit the application of our algorithm only to a pair
of OBDDs. We can combine several OBDDs at the same time by connecting them with
a tree of operator nodes.

Acknowledgements
We would like to thank Arno Wagner for fruitful discussions and providing us help with the
evaluation and preparation of our experimental results.

References

[BHMS84] R. K. Brayton, G. D. Hachtel, C. T. McMillen, and A. L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984

[BRB90] K. S. Brace, R. L. Rudell, R. E. Bryant. Efficient implementation of a BDD package,
in Proc of 27th Design Automation Conference, pp.40-45, 1990

[Bry86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers, C-35:677-691, 1986.

[BW96] B. Bollig and I. Wegener, Improving the variable ordering of OBDDs is NP-complete,
IEEE Transactions on Computers, 45:993-1002,1996.

[FHS78] S. Fortune, J. Hopcroft, and E. M. Schmidt. The Complexity of Equivalence and
Containment for Free Single Variable Program Schemes, in ICALP’78 - Automata Languages
and Programming, LNCS 62, pp.227-240, Springer, 1978

[FOH93] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods for
ordered binary decision diagrams, Proc. IEEE/ACM ICCAD 93, pp. 38-41, 1993

[HDB97] A. Hett, R. Drechsler, and B. Becker. Fast and Efficient Contruction of BDDs by
Reordering Based Synthesis, in Proc. of IEEE ED6TC’97,pp. 168-175, Paris, 1997

[MB88] J. C. Madre and J. P. Billon. Proving Circuit Correctness Using Formal Compari-
son Between Expected and Extracted Behaviour, in Proc. of the 25th ACM/IEEE Design
Automation Conference,pp.308-313,1988

[LGS] LGSynth91 Benchmarks:
http://www.cbl.ncsu.edu/CBL_Docs/lgs91.html.

[MT98] Ch. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design: OBDD -
Foundations and Applications, Springer, Heidelberg, 1998.

MWBSS8] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli, Logic Verifi-
cation Using Binary Desicion Diagrams in a Logic Synthesis Environment, Proc. of the 25th
ACM/IEEE Design Automation Conference, pp.268—271, 1988.

INJE196] A. Narajan, J. Jain, M. Fujita and A. Sangiovanni—Vincentelli, Partitioned ROBDDs
— A Compact, Canonical and Efficient Manipulable Representation of Boolean Functions, in
Proc. IEEE/ACM ICCAD’96, San Jose, CA, USA 547-554, 1996.

INLJT97] A. Narajan, A. Isles, J. Jain, R. K. Brayton and A. Sangiovanni—Vincentelli, Reacha-
bility Analysis Using Partitioned-ROBDDs, in Proc. IEEE/ACM ICCAD’97, San Jose, CA,
USA, 547-554, 1997.

[Rud93] R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision Diagrams, in Proc.
IEEE/ACM ICCAD’93, 42-47, 1993.

[Som] F. Somenzi, CUDD CU Decision Diagram Package.

circuit] — circuit? circuit? — circuitl

Circuits rbs | m — my | Tp — M rbs | 1 — 7w | T — ™
C1355, C3540 || 377310 | 650477 | 650477 | 1376675 650483 650483
C1355, C499 61941 51753 51828 61969 52266 52266
adsb32, alu32 16600 16021 16021 15362 15650 15364

i8, k2 25432 32702 32702 26921 37814 32715
51269, mm9b | 465933 - | 896657 || 493487 | 898628 | 899118
sbc, alu32 659 41585 12223 41586 12230 12225
sbce, alud2r 37214 | 189502 - - | 189293 -
vda, alu4 1916 9571 9571 2975 5696 5696

too_large, vda 4511 11440 11440 15626 19614 18418

Figure 4: OBDD-Sizes of Functional Containment

